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A method for estimating the dynamical statistical properties of the solutions of 
nonlinear Langevin-type stochastic differential equations is presented. The non- 
linear equation is linearized within a small interval of the independent variable 
and statistical properties are expressed analytically within the interval. The 
linearization procedure is optimal in the sense of the Chebyshev inequality. 
Long-term behavior of the solution process is obtained by appropriately match- 
ing the approximate solutions at the boundaries between intervals. The method 
is applied to a model nonlinear equation for which the exact time-dependent 
moments can be obtained by numerical methods. The calculations demonstrate 
that the method represents a significant improvement over the method of 
statistical linearization in time regimes far from equilibrium. 

KEY WORDS: Nonlinear stochastic equations; time-dependent moments; 
statistical linearization; piecewise optimal linearization. 

1. I N T R O D U C T I O N  

The add i t i on  of r a n d o m  inhomogenei t ies  to otherwise de terminis t ic  differ-  
ent ial  equat ions  is a wel l -known device for fo rmal ly  reduc ing  the n u m b e r  of 
degrees of f reedom in m a n y - b o d y  p rob lems  which arise in several  areas  of 
physics,  chemistry,  engineering,  and  biology.  The  Langevin  equa t ion  for the 
veloci ty  of a Brownian  par t ic le  is, of course,  the most  ce lebra ted  example  of 
this approach .  In  general ,  such s tochast ic  di f ferent ia l  equat ions  arise when 
a large system is d iv ided  into a " re levan t"  par t  to be s tudied  in deta i l  and  
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the remaining "environment" which is assumed to be described in terms of 
known statistical properties. For a few examples, the contraction of descrip- 
tion and identification of statistical elements can be carried out exactly. 
However, in most problems the "stochastification ''(1) of deterministic equa- 
tions is performed in an ad hoc manner based on one's intuition regarding 
the underlying microscopic physics. In any case, there is a large and rapidly 
growing body of literature dealing with specific applications of this basic 
method. 

Both linear and nonlinear stochastic differential equations play impor- 
tant roles in stochastic models of physical phenomena. (~-7) However, 
elementary discussions of stochastic differential equations concentrate on 
linear equations having constant coefficients and Gaussian, Markovian 
driving terms. While it is straightforward to extend the treatment to linear 
equations having non-Markovian a n d / o r  non-Gaussian inhomogeneities, 
the treatment of nonlinear equations is, in general, difficult. For linear 
equations, statistical properties of the solution process can be obtained 
from formal analytic solutions of the differential equation in terms of the 
random inhomogeneity. ~2) Nonlinear equations which do not admit ana- 
lytic solutions must generally be solved by approximate methods. 2 An 
essentially exact numerical method for linear or nonlinear equations of the 
type described above is sample function numerical integration in which the 
stochastic process is generated as a collection of its individual realizations. 
This method has been profitably applied to several problems in chemical 
physics, where it is known as the method of classical stochastic trajecto- 
ries. (3'4) Although physically appealing, this approach often has the disad- 
vantage of being computationally expensive especially when long-time 
integrations are necessary. 3 Therefore it is of practical importance to devise 
accurate and computationally efficient approximation methods for solving 
nonlinear stochastic differential equations. Many approximation methods 
have already been introduced for this type of equation. O-3'7'9-H) A large 
number of these attempt to linearize the nonlinear differential equation and 
obtain the exact solution of the linearized problem. For example, standard 

2Although it is possible to convert a nonlinear ordinary differential equation having an 
additive random term into a linear partial differential equation (the continuity equation) for 
the corresponding probability density function, this partial differential equation cannot 
usually be solved analytically. See Refs. 1 and 2 for examples using this approach. 

3Special consideration is required to define the physical significance of sample functions 
produced through numerical simulations of stochastic differential equations having a white 
noise source term since such equations are meaningless in the sample function or mean- 
square sense. The reader is referred to Ref. 8 for a discussion of the proper mathematical 
framework of these calculations. 
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perturbation methods (9~ often neglect the nonlinearity in zeroth order, 
reducing the original problem to a chain of linear equations for the 
higher-order responses. Another linearization method, which originated in 
the engineering literature, is called equivalent or statistical lineafization. (12) 
Here, the nonlinear equation is replaced by a linear one in such a way that 
the time-averaged mean-square error due to replacement is minimized. This 
method has been studied in detail by Budgor and coworkers (13-15) and has 
been shown to yield good results for the equilibrium properties of the 
stochastically forced Duffing oscillator. (13~ 

In this paper, we present a new linearization approximation that we 
call the piecewise optimal linearization (POL) method. As in statistical 
linearization, the nonlinear equation is replaced by a linear one that is 
solved exactly. However, the method is explicitly designed to yield approxi- 
mations for the time dependence of the statistical properties of the nonlin- 
ear stochastic process rather than just the equilibrium, t--> ~ ,  limit. This is 
achieved by partitioning the range of the independent variable into inter- 
vals and then approximating the nonlinear equation by different linear 
equations in different intervals. Statistical linearization is included as a 
special case of the method in which only one time interval of infinite length 
is chosen and the nonlinear equation is approximated by a single linear 
equation. 

Clearly, the transient behavior of a stochastic process can be long lived 
and will, in fact, be the most important aspect in a stochastic treatment of, 
say, relaxation problems. (4) However, most previous applications of ap- 
proximate methods have been concerned only with stationary properties of 
the random process. For our initial investigation, presented here, we treat 
the dynamic behavior of a specific nonlinear stochastic process. We pre- 
sent, apparently for the first time, exact results for several time-dependent 
moments of this simple example and compare these to results obtained 
from statistical linearization and the POL method. These calculations 
demonstrate that (1) statistical linearization approximations for the time- 
dependent moments can be very poor in time regimes far from equilibrium 
and (2) the POL method represents a significant improvement over the 
method of statistical linearization in these time regimes. In a future publica- 
tion, we will extend the POL method to coupled nonlinear generalized 
Langevin equations and will compare the accuracy and computational 
efficiency of the POL method to the method of classical stochastic trajecto- 
ries.(21~ 

The plan of the paper is as follows. In Section 2, we consider a model 
nonlinear differential equation with a random driving term and rigorously 
convert this equation into a hierarchy of coupled differential equations for 
the moments of the solution distribution function. Numerically exact 
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results for the first four moments of this distribution are presented. In 
Section 3, we review the application of the method of statistical lineariza- 
tion to the model nonlinear problem and present the statistical linearization 
estimates for the moments. The POL method for this problem is outlined 
and the POL estimates are compared to the exact results in Section 4. We 
discuss the results in Section 5. 

. MOOEL PROBLEM AND EXACT STATISTICS 

The example considered here is a stochastically forced Bernoulli oscil- 
lator, 

f (( t)  + f iX(t)  + XX(t) 3= F(t),  X(O) = X o (1) 

where F(t) is a delta-correlated Gaussian random force satisfying 

(F ( t ) )  = 0 (2) 

( F ( t ) t ( t ' ) )  = 2DS(t  - t') (3) 

with the brackets ( ) signifying an average over the distribution of the 
random force. As indicated in Eq. (1), we assume that the initial value X(0) 
is a deterministic quantity uncorrelated with the random force. The con- 
stant D in Eq. (3), which is related to the bath temperature in many 
problems, must clearly be positive. Also, the constants X in Eq. (1) must be 
positive to guarantee global stability of the solution process. The constant 
/3, however, could be either positive or negative. In these calculations, we 
restrict/3 to be positive so that the potential 

V ( X )  -- (1/2) fi X2 + (1/4)XX 4 (4) 

has a single minimum. This choice is convenient because one expects 
solutions of Eq. (1) with fi > 0 to approximate the behavior of the Dulling 
oscillator [with a potential proportional to V(X)] in the limit of large 
damping. (16) Negative values of fi lead to a double-minimum potential. 
Previous work on the Brownian motion in double-well potentials (17) has 
demonstrated that statistical linearization estimates of the (stationary) 
covariance function can be very poor owing to strong non-Gaussian 
characteristics of the exact distribution function. While we expect that, in 
many interesting problems, these non-Gaussian deviations build as a func- 
tion of time (is) and that the POL method may still give good estimates of 
statistical properties at short times, we will defer consideration of this 
interesting but more difficult problem. 

In the limit D -- 0, Eq. (l) is deterministic and can be easily solved in 
dosed form. Also, in the limit ~ = 0, the stochastic differential equation is 
linear and one can simply express all statistical properties of the solution 
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process in terms of those of F(t). In particular, for h = 0 and F(t) a 
Gaussian random function, the solution probability density function f(X, t) 
for Eq. (1) is also Gaussian. This follows from the fact that the solution 
process is then a linear transformation of F(t) and the fundamental result 
that the Gaussian character of a random variable is preserved under linear 
transformation. However, for )t > 0, this conclusion does not hold and we 
turn instead to the Fokker-Planck equation associated with Eqs. (1)-(3): 

of(x,t) o o2 
[( i lx+xx3) f (x , t )]  + D-~-~f(X,t)  (5) Ot OX 
f(X, O) = 8 ( X -  Xo) (6) 

The presence of the XX 3 term in Eq. (5) precludes a closed-form analytic 
solution for f(X, t) except at equilibrium, t = oo. This stationary solution, 
found by equating the right-hand side of Eq. (5) to zero, is 

f(X, oo) = ~exp(-  2fl-~ X2)exp(- 4-~ X4 ) (7) 

where ~ is a normalization constant. The non-Gaussian characteristics of 
this exact distribution function for il > 0 and il < 0 are apparent in Eq. (7). 

Although Eq. (5) cannot be readily solved for f(X, t), it follows from 
Eqs. (5)-(6) that the moments of f(X, t) defined by 

(X(t)"> = ( ' ~  dXX~f(X,t), n = 0, 1,2 (8) 
d - -  oO 

satisfy the infinite set of coupled linear differential equations 

d__ <X"> = Dn(n - 1 ) < x n - 2 >  - nil<X'> - nX<Xn+2>, 
dt n = 0 , 1  . . . .  

(9) 
(10) < x ~  = xg 

These moment equations are rigorously equivalent to the original nonlinear 
equation but, for a numerical solution, the coupled equations must be 
truncated at some finite order. It is well known (19) that an arbitrary 
truncation of such equations does not even necessarily preserve the mo- 
ment properties of the exact solution, e.g., that the variance must be 
positive at all times. However, one expects that if the finite set of equations 
is made large enough, then the calculated moments should converge to the 
exact moments. As a method of checking the accuracy of these results, the 
equilibrium moments can be determined by numerical quadrature using the 
exact stationary distribution, Eq. (7), and compared to the numerical results 
from Eq. (9) at large t. 

We have carried out this program for Eqs. (9)-(10) with il = h = 1, 
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Exact Moments, (X(t)n), Calculated from Eq. (9) with/~ = A = 1, 
O= Z/2, Xo= 2 

i 

(X) (X 2) (X 3) (X 4) 

0.02 1.82177 3.33486 6.1336 11.3339 
0.06 1.55776 2.46258 3.9475 6.4119 
0.10 1.36741 1.92020 2.7619 4.0603 
0.14 1.22069 1.55316 2.0470 2.7821 
0.18 1.10232 1.29024 1.5834 2.0216 
0.22 1.00364 1.09422 1.2663 1.5376 
0 .26  0 .919331  0.943742 1.0403 1.2129 
0 .30  0 . 8 4 5 9 3 6  0 . 8 2 5 7 1 0  0.87386 0.98580 
0 .34  0 . 7 8 1 0 9 8  0 . 7 3 1 6 0 7  0.74784 0.82130 
0 .38  0 . 7 2 3 1 5 4  0 .655651  0.65007 0.69870 
0 .42  0 .670895  0 . 5 9 3 7 6 5  0.57255 0.60514 
0 .46  0 . 6 2 3 4 1 8  0.542981 0.50985 0.53231 
0 .50  0 . 5 8 0 0 3 3  0 . 5 0 1 0 7 8  0.45818 0.47471 
0 .75  0 .375405  0 .359431  0.26650 0.29399 
1.0 0 . 2 4 5 5 0 9  0 . 3 1 2 9 4 9  0.16984 0.23813 
1.5 0 . 1 0 5 5 5 6  0 .292225  0.07249 0.21351 
2.0 0 . 0 4 5 4 2 0  0 .289897  0.03118 0.21075 
3.0 0 . 0 0 8 4 1 0  0 . 2 8 9 6 0 6  0.00577 0.21040 
4.0 0 . 0 0 1 5 5 7  0 . 2 8 9 6 0 2  0.00107 0.21040 

i 

D = 1/2 ,  X 0 = 2, and  in tegra ted  the m o m e n t  equat ions  to ob ta in  accura te  
values of the first four  momen t s  out  to t = 4. U p  to 200 coupled  equat ions  
were used in each of the separa te  calcula t ions  for the even- a n d  o d d - o r d e r  
momen t s  to ensure results converging to at  least  six s ignif icant  figures for 
the first and  second momen t s  and  at  least  five s ignif icant  figures for the 
third and  four th  moments .  The  first four  momen t s  as a funct ion  of t ime are  
presented  for  reference in Tab le  I. In  the next  two sections, we compare  
these results to the stat is t ical  l inear iza t ion  and  P O L  m e t h o d  predic t ions .  

3.  S T A T I S T I C A L  L I N E A R I Z A T I O N  

To app ly  the m e t h o d  of stat is t ical  l inear iza t ion to Eq. (1), we rewri te  it  
in the form 

+ fiX + A(X)  = F(t)  (11) 

where A is the error  

A ( X )  = ( 8  -- t )X + XX 3 (12) 

and  fi  is a cons tan t  to be  de t e rmined  so that  A is, in some sense, small .  The  
measure  of this error  is cus tomar i ly  taken  to be  the t ime average of A 2 over  
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the whole time domain 

E = T~oolim -~1 forA(X)2dt (13) 

Now, under the assumption that A 2 is ergodic, Eq. (13) may be replaced by 

E = (A(X)2)oq (14) 

where ( )eq indicates an average over the equilibrium distribution function, 
Eq. (7). The parameter/~ in Eq. (1) is now chosen so that E is minimized. 
Carrying out this minimization for Eq. (14) gives 

/~ = fl + ~k (X4 )e q / (X2 )eq  (15) 

With the neglect of A in Eq. (1), the resulting linear equation can be solved 
analytically, and since F is Gaussian, so will be the approximate probability 
function f(X, t) for the linearized Eq. (11). 

In more general situations, the exact stationary probability density 
function may not be known, either because a Fokker-Planck equation 
cannot be derived or, even if it can, the equilibrium solution may not be 
easily expressed in closed form. Therefore it is usual in applications of 
statistical linearization to replace the averages in Eq. (15) by averages over 
the equilibrium probability density function obtained from the linearized 
Eq. (11). (13) With this replacement, Eq. (15) becomes an implicit equation 
for the optimal/3 which must be solved self-consistently. 4 

We have applied this self-consistent version of statistical linearization 
to Eq. (1) with the same parameters used in Section 2, fl = X = 1, D = 1/2, 
X 0 = 2. The results for the first four moments of f(X, t), expressed as a 
percentage error from the exact results, are plotted in Fig. 1. It is seen that 
these errors are very large for t < 1 but decrease in magnitude t > 1. Thus, 
although the optimal fl may represent the best global parameter according 
to Eq. (13), the local, short-time errors can be quite significant, making the 
statistical linearization approach unreliable for the treatment of relaxation 
processes. The relatively small errors occurring near equilibrium are, of 
course, to be expected from Eq. (15). These numerical results show that 
statistical linearization should be regarded as a distinctly nonuniform 
approximation method for estimating dynamical statistical properties of 
nonlinear stochastic processes. In the next section, we show that the POL 
method reduces these errors and gives a more uniform approximation to 
these moments. 

4According to Ref, 13, use of the exact stationary distribution function in Eq. (15) leads to the 
"modified version of statistical linearization" (modified SLO). 
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Fig. 1. Statistical linearization errors for the time-dependent moments of Eq. (1) with 
/ ~ = h =  1, D = I / 2 ,  X 0 = 2 .  Q is the pe rcen tage  er ror  of the n th  momen t ;  Q 
= [(X'>estimated -- (Xn>exaet] /<X">exaet  • 100%, n = 1 ( ),  n = 2 ( .  �9 �9 ), n = 3 ( - - - ) ,  
n = 4 (----). Singularities in this and the following graphs are due to sign changes of Q. 

4. PIECEWlSE OPTIMAL LINEARIZATION METHOD 

To implement the POL method, we first partition the time domain into 
a set of intervals, each of arbitrary length. Within thejth interval, Eq. (1) is 
rewritten 

2 + f l j X + c y + ~ = F ( t ) ,  ~ _ , <  t < ~, to=O (16) 

where ~ and cj are constants within the interval and the error ej is 

= ( ~  - -  ~ j ) S  - cj "4" ~kS 3 (17) 

Again, we want to choose the free parameters/3j and cj so that a measure of 
this error is small. Then ej is neglected in Eq. (16) and the resulting linear 
equation is solved analytically. As in statistical linearization, the approxi- 
mate probability density function for the j th interval will be Gaussian and 
so cannot be expected to adequately reproduce important non-Gaussian 
characteristics of the exact solution. The added flexibility in the POL 
method comes from introducing two free parameters into the linearized 
equation and allowing these to change between intervals. 

We choose the parameters flj and cj so that 

(es>,j = 0 (18) 

<~2)5 = minimum (19) 
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where the subscript 9 indicates that the average is to be taken with respect 
to the probability density function evaluated at t--- ~. The conditions Eq. 
(18) and (19) are optimal in the sense of the Chebyshev inequality (2~ 

e { l z  - (z) l  > a} < o } / a  2, a > 0 (20) 

which relates the probability of deviations of a random variable z from the 
mean value (z} to its variance o~. Applied to Eqs. (18) and (19), the 
Chebyshev inequality assures us that large deviations of the random vari- 
able ej(9) from the value zero are rare so that ~(tj.) is probabilistically small. 
Carrying out the minimization indicated in Eq. (19) gives the optimal 
parameters 

/~j- = /~ "[" X[(X4~tj -- (X3}9(X}tj]/~2(/j) (21) 

= ~k[ ( X 2 ) t j ( X 3 ~ t j  - ( X ) t j ( X 4 ) t j ] / ~ 2 ( ~ )  (22) 

where 

~.2(9) = (X2)9 _ (X2)9 (23) 

However, since the exact probability density function at t = 9 is unknown, 
we again impose the self-consistency condition and solve Eqs. (21) and (22) 
iteratively using the approximate probability density function fj(X, ~) ob- 
tained from the linearized equation to compute the necessary moments. 

The formal solution of Eq. (16) with ~ = 0 is 

x ( J ) (  t )  = Gj(  t - {/_ l)X(J- 1)(9_1) -{-- cj/  flj[1 - Gj( t - ~-l)]  

2' + ~ ( t -  , ) r ( , ) a , ,  ~_~ <. t < ~. (24) 

where 

Gj(t) = e -~ '  (25) 

Equation (24) involves the initial condition X ( j -  l)(tj_ l) so that the solution 
is (mean-square) continuous at the boundary t = w x between the (j  - 1)st 
and jth intervals. It follows from Eq. (24) with Eqs. (2) and (3) that the 
mean and variance of fj(X, t) are 

( x (J ) ( t ) )  = Gy(t - ~_I)(X(J-I)(~_I) ~ 4- 5//3j[1 -- Gj(t - t/-1)] (26) 

Oj2(t) ~--[aj( t-  tj-_l)]2~2_l(tj_a)-I - O/jSj(1 - [ G j ( / -  tj_l)] 2) (27) 

Since f j (X, t )  is Gaussian in this example, Eqs. (26) and (27) completely 
specify fj (X, t) and are sufficient for calculating the POL approximations of 
the higher-order moments occurring in Eqs. (21) and (22). In more general 
situations, where F(t) is not Gaussianly distributed, higher-order moments 
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F ig .  2. I n t e g r a t i o n  s t ep  size d e p e n d e n c e  o f  t h e  P O L  e r r o r  f o r  t he  f i r s t  m o m e n t  ( X >  o f  E q .  (1)  

w i t h / 3  = X = 1, D = 1 / 2 ,  X o = 2. Q is t he  % e r r o r  as  d e f i n e d  in  t he  c a p t i o n  o f  F ig .  1; h I = 0 . 1 0  

( ), h 2 = 0 .01 (----) ,  h 3 = 5 x 10 - s  ( �9 �9 �9 ). T h e  s t a t i s t i c a l  l i n e a r i z a t i o n ,  h 0 = ~ ,  r e su l t s  a r e  

i n d i c a t e d  as  ( . . . . .  ). 

can be calculated directly from Eq. (24). Propagation formulas similar to 
Eqs. (26) and (27) would again be obtained. 

In the application of the POL method to Eq. (1), we have performed 
several calculations, integrating each time out to t = 4, and keeping the step 
size constant within each calculation. Figures 2-5 present the POL results 
for the first four moments of fj(X, ~) with three choices of the step size h: 
h I = 0.10, h 2 = 0.01, and h 3 = 5 • 10 -5. Comparison of these results with 
the moments calculated by statistical linearization (h o = oo) clearly shows 
the dramatic improvement at short times obtained by using the POL 
method. It is especially interesting that even with the largest step size 
h 1 --- 0.10, the percentage errors for the POL results are most often at least 
an order of magnitude smaller than the statistical linearization errors. 
Computationally, it should be noted that the 40 iterative cycles necessary 
for the POL calculation with h = 0.10 increases the execution time less than 
25% over the statistical linearization calculation. In general, except near the 
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Fig. 3. S a m e  as  Fig. 2, e x c e p t  for  the s e c o n d  m o m e n t  (X2) .  

points where the error changes sign and near equilibrium, where the errors 
become nearly equal, the POL errors decrease with decreasing step size. 
However, the decrease is much more marked going from h 1 to h 2 than from 
h 2 to h3; that is, the POL calculations converge rapidly with respect to 
decreasing step size. Since the linearization scheme can never yield the 
exact, non-Gaussian distribution function even for infinitesimal step sizes, 
it is encouraging that a relatively large step size gives such significant 
improvements over the method of statistical linearization. Asymptotically, 
the POL moments approach the statistical linearization results. This is to be 
expected since, as the mean of the stochastic process approaches the 
equilibrium value ( x }  = 0, all odd moments of fj(X, oo) vanish and Eq. (21) 
reduces to Eq. (15), while cj in Eq. (22) approaches zero. We note, however, 
that the POL and statistical results are not expected to be the same 
asymptotically when the mean at equilibrium is not zero. 

While we do not present methods for correcting the POL method in 
this paper, we can easily discuss the ultimate accuracy of the approach by 
using the exact moments to calculate the POL parameters in Eqs. (21) and 
(22) and then using the modified density function to calculate approxima- 
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Fig. 4. Same as Fig. 2, except for the third moment (X3). 

tions for these moments. That  is, we can answer the question: What is the 
error introduced by imposing the self-consistent condition of using a 
density function calculated from the linearized equation to determine the 
moments appearing in Eqs. (21) and (22)? Budgor eta/. (13) have previously 
shown that using the exact equilibrium density function to calculate the 
necessary quantities in the statistical linearization approximation signifi- 
cantly improves the stationary second-order properties of the Duffing 
oscillator. Figure 6 displays the modified POL method estimates of the first 
four moments obtained for a step size h = 0.01. Comparison of these results 
for h = 0.01 in Figs. 2-5 (dotted line) shows that the modified POL 
estimates are consistently more accurate than the self-consistent POL 
estimates for the first and second moments, especially near equilibrium 
where the improvement is better than two orders of magnitude. However, 
for the third and fourth moments, the self-consistent POL estimates are 
generally better than the modified POL results. This is clearly due to 
chance cancellation of errors, since for a Gaussian distribution, the higher- 
order moments are expressed algebraically in terms of the first two too- 
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ments. We conclude that the modified POL method, even if generally 
applicable, would not guarantee a better set of moments than obtained 
from the self-consistent POL method. 

5. CONCLUSIONS 

In this paper we have proposed a piecewise optimal linearization 
(POL) method for nonlinear stochastic differential equations containing a 
random inhomogeneity. Through numerical calculations for the time- 
dependent moments of a simple nonlinear process governed by such an 
equation, we have verified that this scheme provides significantly better 
estimates of the moments at short times then does the method of statistical 
linearization and, at large times, these estimates approach the statistical 
linearization results. The improvement is typically better than two orders of 
magnitude for the four moments that we consider. Since the POL method 
can be easily generalized to coupled nonlinear Langevin equations, (21) we 
anticipate that it will be a useful technique for approximating the transient 
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statistical behavior in stochastic models of physical systems, especially 
those driven by Gaussian random forces. For these models, the limiting 
problem of any linearization method is that the approximate density 
function for the solution process will also be (jointly) Gaussian. When 
non-Gaussian characteristics are important, (6'17) neither statistical lineariza- 
tion or the POL method should be expected to yield good estimates of the 
statistical properties. 
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